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Motivation

• The Cambrian era is upon us:
§ Hardware landscape:

ü Many custom accelerators are being developed
ü Each HW design has its own interface, performance and energy profile

§ Software landscape:
ü Complex workflows (simulations + in-situ data analytics, simulations + AI)
ü Many programming languages and frameworks (from C/C++ to Python, TensorFlow, etc.)

• Program and performance portability has become a major concern:
§ Current HPC systems: ORNL Summit, LLNL Sierra, SNL Trinity
§ Next HPC systems: ORNL Frontier, LLNL El Capitan, ANL Aurora

• Expecting multi-device systems with several classes of devices within a single 
SoC (e.g., CPUs, GPUs, AI engines, FPGAs, …)

• Programming such systems is challenging!
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Proposal: A Portable Hardware/Software Stack

• Scientists express their algorithm with high-level DSLs that provide domain-
specific programming abstractions

• Compiler lowers DSL code to device-specific, highly-optimized code
• Dynamic runtime coordinates access to computing resources and data 

transfers 
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MCL

OpenMP TFlow Kokkos TACO

App1 App2 App3 Applications

Domain-Specific Language

Hardware
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Tensor Algebra COmpiler (TACO)

• TACO is a fast and versatile library for linear and 
tensor algebra

• C++ and Python extension to support complex 
tensor expression
§ Mostly focused on sparse tensor algebra*

• Automatically generate
§ Sequential CPU code
§ Parallel OpenMP code 
§ NVIDIA CUDA GPU code

* Not all sparse tensor algebra operations are supported
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Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman 
Amarasinghe. 2017. The tensor algebra compiler. Proc. ACM Program. Lang. 1, 
OOPSLA, Article 77 (October 2017), 29 pages. DOI:https://doi.org/10.1145/3133901
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TACO Example

C(𝑖, k) = 𝐴 𝑖, 𝑗 ∗ 𝐵(𝑗, 𝑘)

y(𝑖) = 𝐴 𝑖, 𝑗 ∗ 𝑥(𝑗)

OpenMP code 
generation for 
dense DGEMM  
computation

CUDA code 
generation for 

sparse matrix-dense 
vector computation
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TACO Software Stack

TACO C++

TACO Python
TACO 

Compiler

Sequential

CUDA
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NVIDIA GPU

X86 CPU

AMD GPU

AI Engine
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TACO-MCL: Integrated Programming Eco-System 
for Tensor Algebra 

TACO C++/Python Language

TACO-MCL Compiler

MCL Runtime

Heterogeneous Devices

• Automatically generate portable MCL host code 
and OpenCL kernels

• Break long expressions into smaller kernels for 
multi-device execution

• Analyze data and control flow dependencies to 
maximize asynchronous execution

• Asynchronous task execution and overlapping 
of data transfers and computation

• Load balancing and resource management
• Multi-applications support
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The Minos Computing Library (MCL)

• Framework for programming extremely heterogeneous systems
§ Programming model and programming model runtime
§ Abstract low-level architecture details from programmers
§ Dynamic scheduling of work onto available resources

• Key programming features:
§ Applications factored into tasks
§ Asynchronous execution
§ Devices are managed by the scheduler 
§ Co-schedule independent applications
§ Simplified APIs and programming model (based on OpenCL)

• Flexibility:
§ Scheduling framework
§ Multiple scheduling algorithms co-exist
§ Code portability
§ Resources allocated at the last moment

September 2, 2020P3HPC Workshop

Roberto Gioiosa, Burcu O. Mutlu, Seyong Lee, Jeffrey S. Vetter, 
Giulio Picierro, and Marco Cesati. 2020. The Minos Computing 
Library: efficient parallel programming for extremely 
heterogeneous systems. In Proceedings of GPGPU '20). ACM, New 
York, NY, USA, 1–10. DOI:https://doi.org/10.1145/3366428.3380770
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Scaling Up and Down

Xilinx MPSoC ZynQ ZCU 102/106
September 2, 2020P3HPC Workshop

Apple MacBook Pro

Apple iMac Pro

NVIDIA DGX-1 

(P100/V100)

IBM Summit

Same code runs on all these 
systems without modification
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TACO-MCL Software Stack

TACO C++

TACO Python
TACO-MCL 
Compiler

Sequential

CUDA

OpenMP

NVIDIA GPU

X86 CPU

AMD GPU

AI Engine

FPGA

MCL

By using MCL has TACO backend, TACO 
applications will:
• Leverage a broader classes of computing 

devices
• Execute in multi-device environments
• Execute in a multi-application environment
• Exploit sophisticated scheduling and load 

balancing algorithms
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TACO-MCL Workflow

TACO-MCL 
Compiler

Computing 
Device

MCL / CPU

Original TACO application

OpenCL kernel

C/C++ MCL driver
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Experimental Results 1/2

• CCSD(1) method from NWChem
§ Coupled cluster (CC) methods are commonly used in 

the post Hartree-Fock ab initio quantum chemistry 
and in nuclear physics computation.

§ The CC workflow is composed of iterative set of 
excitation (singles (S), doubles (D), triples (T), and 
quadruples (Q)) calculations 

• Testbed:
§ NVIDIA DGX-1 V100
§ 2x Intel Xeon E5-2680, 768GB memory
§ 8x NVIDIA V100, 16GM memory, NVLink
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Experimental Results 2/2

0

1

2

3

4

5

6

7

8

Small Medium Large

TACO/MCL Speedup w.r.t. TACOProblem 
Size

TACO
(seconds)

TACO/MCL
(seconds)

Speedup
w.r.t. TACO

Small 0.85 0.168 5.086

Medium 39.07 7.05 5.58

Large 1209.93 223.10 5.43

• TACO applications automatically 
scale to use all GPUs

• All problem sizes show 
scalability

• Expect similar speedups with 
larger problems

• Not ideal speedup -- WIP
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Conclusions

• Program and performance portability has become a major concern
• Current and future systems feature multi-device, multi-class accelerators

§ Programming and porting applications on such systems is extremely difficult
§ Each device class has its own programming model
§ Need to manage data locality, load balancing, correctness, and resource utilization

• We developed and approach that attempts to solve the problem with an integrated 
software stack:
§ Users develop applications using high-level DSLs
§ Compiler lower code to targets
§ Runtime manages data locality, load balancing, and computing resources

• With TACO-MCL, original TACO applications gains
§ Access to non-NVIDIA resources (AMD/Intel GPUs, FPGAs, AI engines)
§ Transparent and automatic access to multi-device systems
§ Transparent execution in multi-applications environments (complex workflows)
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